SUBMAJORIZATION OF THE ARAKI-LIEB-THIRRING INEQUALITY

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Araki-Lieb-Thirring inequality

In this paper we do two things. In Section 2 we obtain complementary inequalities. That is, for 0 ≤ r ≤ 1 we obtain upper bounds on Tr[ABA] (in terms of the quantity Tr[ABA]), and lower bounds for r ≥ 1. Such bounds may be useful, for example, to obtain estimates on the error incurred by going from Tr[ABA] to Tr[ABA]. Second, in Section 3, we find a generalisation of the ALT inequality to gener...

متن کامل

A Lieb-Thirring inequality for singular values

Let A and B be positive semidefinite matrices. We investigate the conditions under which the Lieb-Thirring inequality can be extended to singular values. That is, for which values of p does the majorisation σ(BpAp) ≺w σ((BA) p) hold, and for which values its reversed inequality σ(BpAp) ≻w σ((BA) p).

متن کامل

A Positive Density Analogue of the Lieb-thirring Inequality

The Lieb-Thirring inequalities give a bound on the negative eigenvalues of a Schrödinger operator in terms of an L norm of the potential. These are dual to bounds on the H-norms of a system of orthonormal functions. Here we extend these bounds to analogous inequalities for perturbations of the Fermi sea of non-interacting particles, i.e., for perturbations of the continuous spectrum of the Lapl...

متن کامل

New Bounds on the Lieb-thirring Constants

are known as Lieb-Thirring bounds and hold true with finite constants Lγ,d if and only if γ ≥ 1/2 for d = 1, γ > 0 for d = 2 and γ ≥ 0 for d ≥ 3. Here and in the following, A± = (|A| ± A)/2 denote the positive and negative parts of a self-adjoint operator A. The case γ > (1 − d/2)+ was shown by Lieb and Thirring in [21]. The critical case γ = 0, d ≥ 3 is known as the Cwikel-Lieb-Rozenblum inequ...

متن کامل

On general Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities

These classical inequalities allow one to estimate the number of negative eigenvalues and the sums Sγ = ∑ |λi| for a wide class of Schrödinger operators. We provide a detailed proof of these inequalities for operators on functions in metric spaces using the classical Lieb approach based on the Kac-Feynman formula. The main goal of the paper is a new set of examples which include perturbations o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyushu Journal of Mathematics

سال: 2015

ISSN: 1340-6116,1883-2032

DOI: 10.2206/kyushujm.69.387